Machine Learning

Stephen O'Connell

Capacity and Performance
Analysis

Overview

- Problem
- How Machine Learning can help
- Status:
 - Training Dataset
 - •MART Mike Bowles
 - •SVM R e1071 package
- Plans
- Demo

Problem Space

Many Many Servers to run the business

Functional organized, not a lot of cloning

• Different Workloads: Database, transactional, business analytics, Other (?????)

 How do you do capacity planning, forecast utilization, identify problems?

Problem Space - The old way

- Capture Metrics all day long, CPU, Memory, Disk, Network
- Consolidate data to hourly, daily, monthly avg, max, min, p95, etc.
- Monthly use the historical data to generate a forecasted utilization
 - •180 days, Mon-Fri, approx 130 days into the model, simple regression.
- Looking servers "out of gas", broken, declining, etc.

Problem Space - Old Way

	Α	0	Р	Q	R	S	Т	U	V	W	Х
1	Host Capacity Forecast Report		<0%	>80%	>90%						
2	server_name	days	avg_30_days	avg_60_days	avg_90_da	avg_180_c	p95_30_da	p95_60_da	p95_90_da	p95_180_c	avgm
3		129	145.44	169.73	194.02	266.89	140.25	161.71	183.18	247.56	5
4		129	131.69	146.18	160.68	204.16	132.62	147.04	161.46	204.73	3
5		126	117.36	132.64	147.91	193.73	117.97	133.18	148.4	194.05	5
6		129	112.19	135.61	159.03	229.29	116.24	139.45	162.66	232.3	3
7		129	98.66	116.56	134.47	188.17	103.55	121.31	139.06	192.33	6
8		129	93.27	110.22	127.17	178.01	107.51	122.72	137.94	183.57	8
9		129	93.1	110.49	127.87	180.02	103.05	122.55	142.05	200.54	3
10	<u></u>	129	89,35	92.05	94.75	102.85	95.98	97.89	99.79	105.52	3
11		129	87.83	100.52	113.21	151.27	105.92	117.33	128.75	162.99	2
12		42	75.69	106.86	138.02	231.53	85,12	118.05	150.97	249.75	
13		129	75.61	76.75	77.89	81.31	78.41	79.53	80.66	84,05	5
14	<u>:</u>	129	75.29	75.96	76.62	78.62	100.03	100.06	100.09	100.19	1
15	<u> </u>	129	75.27	90.63	105.99	152.07	89.8	104.27	118.74	162.15	2
16	<u></u>	129	74.61	85.59	96.57	129.52	102.6	119.14	135.68	185.31	4
17		129	73.91	83.64	93.37	122.54	97.05	107.96	118.88	151.62	7
18	<u>"</u>	129	73.87	92.05	110.24	164.79	88.42	110.11	131.79	196.83	
19		115	73.36	83,59	93.82	124.51	73.87	83.81	93.74	123.56	
20		129	73.24	82.98	92.72	121.94	74.12	83,93	93.75	123.2	4
21		129	72.43	74.81	77.19	84.34	94.57	97.9	101.24	111.25	6
22		125	71.97	84.55	97.13	134.87	90.55	102.53	114.5	150.42	2
23	100	129	71.85	78.5	85.15	105.11	88.94	95.47	101.99	121.57	7
24	:	85	71.08	90.73	110.38	169.34	76.11	97.01	117.92	180.64	5
25	co a spreadshoot of all the pur	26	70.72	105.89	141.06	246.58	87.74	127.98	168.21	288.92	6

Produce a spreadsheet of all the numbers

Sort by the busiest Server

Top 10 - Bottom 10

Doesn't work for 1800+ servers, really won't work for 4000 servers

Problem Space - Types of Servers - Broken - Fixed

Problem Space - Types of Servers - Highly Variable - Cycle

Problem Space - Types of Servers - Low

Problem Space - Types of Servers - What I am looking for

How Machine Learning Can Help

- Tons of servers with similar "patterns", with LOTS of noise
- ML is great at finding the patterns in the data that are re-occurring
- Training can be straight-forward, after the first pass
- Can programmatically incorporate into the monthly forecasting process, tag the servers with the "guessed" pattern.
- Can be retrained as needed.

Status

- Created a training dataset Manually went through 1800
 Servers and classified them as:
 - •1 Low
 - •2 Broken
 - •3 Variable
 - •4 Monitor
 - •5 Fixed
 - •6 Declining
- Created Matrix from the Raw Data
- Evaluated R Package E1071 SVM Model developed as an initial pass at classification of the data

Status - e1071 SVM

- Have developed initial set of models using the training data
- Have done some tuning of the model
- Have created visualizations of the data to help understand the "patterns" in the data, and can be used to tune the training data.

Status - e1071 SVM

Untuned Model Results: Not very good

NUMBER IN EACH CLASS

1 2 3 4 5 6 529 26 486 119 64 91

CONFUSION MATRIX

y
pred 1 2 3 4 5 6
1 478 1 121 0 1 9
2 0 15 0 0 0 0
3 50 3 357 17 10 35
4 0 7 6 101 1 2
5 0 0 1 1 49 0
6 1 0 1 0 3 45

PERCENTAGE OF PROPERLY CLASSIED SAMPLES

[,1] [,2] [,3] [,4] [,5] [,6] [1,] 90.4 57.7 73.5 84.9 76.6 49.5

Tuning Grid: Visual of the grid search for "best" cost and gamma

Tuned the svm with a range of Cost and gamma using grid search Sweet Spot:

Cost = 3.5

Gamma = .9

Tuned Model Results: Improved Classification - over fit?

TUNNING RESULTS

```
Parameter tuning of 'svm':
- sampling method: 10-fold cross validation
- best parameters:
   gamma cost
    0.9 3.5
- best performance: 0.3125318
```

CONFUSION MATRIX

```
y
c_new 1 2 3 4 5 6
1 529 1 4 0 0 0
2 0 25 0 0 0 0
3 0 0 482 0 0 0
4 0 0 0 119 0 0
5 0 0 0 0 64 0
6 0 0 0 0 0 91
```

PERCENTAGE OF PROPERLY CLASSIED SAMPLES

```
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 100 96.2 99.2 100 100 100
```

Status - e1071 SVM

Misclassification analysis: What specific samples were misclassified.

SAMPLE NUMBER AND TRAINING CLASSIFICATION

```
199 850 857 868 998

1 1 1 1 1

Levels: 1 2 3 4 5 6
```

WHAT THEY WERE 'MISCLASSIFIED' AS BASED ON THE SVM MODEL

```
[1] "2" "3" "3" "3" "3"
```

MISCLASSIFIED SAMPLE NAMES - INCLUDED IN THE FOLLOWING CHARTS

[1] "SAMPLE_199" "SAMPLE_850" "SAMPLE_857" "SAMPLE_868" "SAMPLE_998"

1 16 ⊦

Training Data Visualization: Misclassified Samples

Misclassified samples, visual can be used to evaluate why the sample was misclassified. Should it be removed? Should be classified differently in the training data?

| 17 |

Training Data Visualization: CLASS = 2 - BROKEN SAMPLES

CLASS 2 - BROKEN SAMPLES have a pattern with a "step up" at the end of the feature set, i.e feature (utilization) has stepped up to a consistent level indicating a possible problem.

Training Data Visualization: CLASS = 5 - FIXED SAMPLES

CLASS 5 - FIXED SAMPLES are samples with a pattern of "step down" at some point in the feature set indicating utilization has returned to a stable state.

- Experiment more with MART, e1071, Shugon, other classification techniques
- Measure results of classification on "real" data working on prior month data...
- Incorporate ML techniques into monthly reporting process to enhance the capacity, forecast, and problem resolution process.
- Will need to build a 're-training' tool/technique to improve the patterns used in the model to make classification predictions.

Demonstration

 Review 'basic' examples of R package e1071 svm_tutorial.R

Review 'CPU classification' code - stephen_cpu.R

- All data and code are included in demo.zip on machinelearning site
 - •Includes R console output if you don't have R available to run the code