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Overview

• Problem

• How Machine Learning can help

• Status:

•Training Dataset

•MART – Mike Bowles

•SVM – R e1071 package

•Plans

•Demo
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Problem Space

• Many Many Servers to run the business

• Functional organized, not a lot of cloning

• Different Workloads: Database, transactional, business 
analytics, Other (?????)

• How do you do capacity planning, forecast utilization, identify 
problems?
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Problem Space – The old way

• Capture Metrics all day long, CPU, Memory, Disk, 
Network

• Consolidate data to hourly, daily, monthly avg, max, min, 
p95, etc.

• Monthly use the historical data to generate a forecasted 
utilization

•180 days, Mon-Fri, approx 130 days into the model, 
simple regression.

• Looking servers “out of gas”, broken, declining, etc.
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Problem Space – Old Way

Produce a spreadsheet of all the numbers

Sort by the busiest Server

Top 10 – Bottom 10

Doesn't work for 1800+ servers, really won't work for 4000 servers
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Problem Space – Types of Servers – Broken - Fixed
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Problem Space – Types of Servers – Highly Variable - Cycle
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Problem Space – Types of Servers – Low 
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Problem Space – Types of Servers – What I am looking for 
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How Machine Learning Can Help

• Tons of servers with similar “patterns”, with LOTS of 
noise

• ML is great at finding the patterns in the data that are 
re-occurring 

• Training can be straight-forward, after the first pass

• Can programmatically incorporate into the monthly 
forecasting process, tag the servers with the “guessed” 
pattern.

• Can be retrained as needed.
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Status

• Created a training dataset - Manually went through 1800 
Servers and classified them as:

•1 - Low

•2 - Broken

•3 - Variable

•4 - Monitor

•5  - Fixed

•6 – Declining

• Created Matrix from the Raw Data

• Evaluated R Package - E1071 – SVM Model developed as an 
initial pass at classification of the data
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Status – e1071 SVM

• Have developed initial set of models using the training 
data

• Have done some tuning of the model

• Have created visualizations of the data to help 
understand the “patterns” in the data, and can be used 
to tune the training data.
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Status – e1071 SVM

Untuned Model Results: Not very good

NUMBER IN EACH CLASS

  1   2   3   4   5   6
529  26 486 119  64  91

CONFUSION MATRIX
    y
pred   1   2   3   4   5   6
   1 478   1 121   0   1   9
   2   0  15   0   0   0   0
   3  50   3 357  17  10  35
   4   0   7   6 101   1   2
   5   0   0   1   1  49   0
   6   1   0   1   0   3  45

PERCENTAGE OF PROPERLY CLASSIED SAMPLES

     [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 90.4 57.7 73.5 84.9 76.6 49.5
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Tuning Grid: Visual of the grid search for “best” cost and gamma 

Tuned the svm with a range of Cost and gamma using grid search
Sweet Spot:
Cost = 3.5
Gamma = .9
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Status – e1071 SVM

Tuned Model Results: Improved Classification – over fit?

TUNNING RESULTS
Parameter tuning of 'svm':

- sampling method: 10-fold cross validation

- best parameters:
 gamma cost
   0.9  3.5

- best performance: 0.3125318

CONFUSION MATRIX
     y
c_new   1   2   3   4   5   6
    1 529   1   4   0   0   0
    2   0  25   0   0   0   0
    3   0   0 482   0   0   0
    4   0   0   0 119   0   0
    5   0   0   0   0  64   0
    6   0   0   0   0   0  91

PERCENTAGE OF PROPERLY CLASSIED SAMPLES
     
     [,1] [,2] [,3] [,4] [,5] [,6]
[1,]  100 96.2 99.2  100  100  100
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Status – e1071 SVM

Misclassification analysis: What specific samples were 
misclassified.

SAMPLE NUMBER AND TRAINING CLASSIFICATION

199 850 857 868 998
  1   1   1   1   1
Levels: 1 2 3 4 5 6

WHAT THEY WERE 'MISCLASSIFIED' AS BASED ON THE SVM MODEL

[1] "2" "3" "3" "3" "3"

MISCLASSIFIED SAMPLE NAMES - INCLUDED IN THE FOLLOWING CHARTS

[1] "SAMPLE_199" "SAMPLE_850" "SAMPLE_857" "SAMPLE_868" "SAMPLE_998"
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Training Data Visualization: Misclassified Samples

Misclassified samples, visual can be used to evaluate why the 
sample was misclassified.  Should it be removed?  Should be 
classified differently in the training data?
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Training Data Visualization: CLASS = 2 – BROKEN SAMPLES

CLASS 2 – BROKEN SAMPLES have a pattern with a “step up” at the 
end of the feature set, i.e feature (utilization) has stepped up 
to a consistent level indicating a possible problem.
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Training Data Visualization: CLASS = 5 – FIXED SAMPLES

CLASS 5 – FIXED SAMPLES are samples with a pattern of “step down” 
at some point in the feature set indicating utilization has 
returned to a stable state.
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Plans

• Experiment more with MART, e1071, Shugon, other 
classification techniques

• Measure results of classification on “real” data – working 
on prior month data...

• Incorporate ML techniques into monthly reporting 
process to enhance the capacity, forecast, and problem 
resolution process.

• Will need to build a 're-training' tool/technique to 
improve the patterns used in the model to make 
classification predictions.
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Demonstration

• Review 'basic' examples of R package e1071 – 
svm_tutorial.R

• Review 'CPU classification' code – stephen_cpu.R

• All data and code are included in demo.zip on 
machinelearning site

•Includes R console output if you don't have R available 
to run the code
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