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Abstract

Multiple additive regression trees (MART) is a methodology for predictive data mining
(regression and classification). This note illustrates the use of the R/MART interface. It is
intended to be a tutorial introduction. Minimal knowledge concerning the technical details
of the MART methodology or the use of the R statistical package is presumed.

1 Introduction

Predictive data mining is concerned with constructing statistical models from historical data.
These models are used to predict future unknown data values, and/or to help gain an under-
standing of the predictive relationships represented in the data. The data consists of sets of
measurements made on objects (observations) collected in a data base. One of the measured
variables (denoted by y) is designated as the one to be predicted, given future values of the other
variables denoted by x = {x1, x2, · · ·, xn}. Depending on the field of study, y is referred to as the
response variable (Statistics), output variable (neural nets), or concept (Machine Learning). The
x–variables are referred to as predictor variables, input variables, or attributes in these respective
fields.
The data base consists of a collection of N previously solved cases

{yi, xi1, · · ·, xin}
N

i=1
. (1)

The predictive model takes the abstract form

ŷ = f̂(x1, · · ·, xn), (2)

where f̂ is a prediction rule that maps a set of predictor variable values to a response value.
The goal is to use the data to produce an accurate mapping. The notion of accuracy depends
on the type of the response variable y in terms of the set of values it can assume. If y assumes
numeric values the problem is known as regression and lack of accuracy is defined in terms of a
distance measure d(y, ŷ) between the predicted value ŷ and the unknown true value y. Common
measures of inaccuracy are average absolute error

AAE = ave |y − ŷ| (3)

or root mean squared error

RSME =
√

ave (y − ŷ)2.

Here ave represents the average over future values to be predicted. If y assumes unorderable
categorical values (class labels), the problem is called classification. In this case inaccuracy is
generally defined to be the fraction of incorrect future predictions (error rate).
Multiple additive regression trees (MART) is a particular methodology (among many) for

trying to solve prediction problems. It is described in detail in Friedman (1999a, 1999b). Besides
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accuracy, its primary goal is robustness. It tends to be resistant against moderate to heavy
contamination by bad measurements (outliers) of the predictors and/or the responses, missing
values, and to the inclusion of potentially large numbers of irrelevant predictor variables that
have little or no effect on the response .
This note describes the use of MART with the R statistical package. It is presumed that both

R and the R/MART interface have been installed. The R statistical package can be obtained
from

http://www.r-project.org/.

The R/MART interface can be obtained from

http://www-stat.stanford.edu/˜jhf/R-MART.html. (4)

This note is intended for beginning users. Only the most basic uses of the MART package
are described. Most options and “tuning” parameters are set to defaults. As users become
familiar with the basic procedures, they can experiment with more advanced options. All of the
options associated with each MART procedure in R are described in detail in their associated
documentation (help files) included with the installation.
The R/MART interface consists of commands entered in the R command window. These

commands return either numeric results or plots. It is assumed that the user is familiar with
how to invoke R and enter commands in its command window.

2 Reading in data

The primary input to MART is the historical data (1) used to construct the predictive model (2).
This data must be read into R. R is able to input data from a wide variety of data producing
applications. (See R documentation.) The most straightforward way is to store the data in
some directory as ASCII (text) file(s). They can then be read into R using the scan command.
Suppose the predictor variable values are stored in the file datadir/xdata.txt where datadir is
the full path name of a selected directory. Entering

> x scan(’datadir /xdata.txt’)

at the R command prompt “>” will store this data under the name “x” in R. Similarly, if the
response values were stored in the file ydata.txt in the same directory, the command

> y scan(’datadir /ydata.txt’)

stores them under the name “y” in R. The actual data files (xdata and ydata) used for the
illustrations below can be downloaded from (4).
The R mart procedure requires that the predictor variable values be in the form of a matrix

whose rows represent observations and columns represent predictor variables. The values in “x”
can be converted to such a matrix with the R matrix command

> x matrix(x, ncol = nvar, byrow=T)

where nvar is the number of predictor variables. The argument “byrow=T” indicates that the
predictor variable values were stored in the file xdata.txt in observation sequence. That is,
the predictor variable values for each observation follow those of the previous observation. If
the data were stored in variable sequence, where all of the observation values for a predictor
variable follow those of the previous variable, then the last argument would be omitted. For the
illustrative data used below, there are ten predictor variables stored in observation sequence, so
the command would be

> x matrix(x, ncol = 10, byrow=T)
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The observations now correspond to the rows of the matrix “x”. For the illustrative data set the
command

> nrow(x)

[1] 10000

shows that this data set consist of 10000 observations.
The mart procedure must be told the type of variable (numeric or categorical) of each pre-

dictor variable. This information can be stored in a vector of flags “lx” of length nvar. Each
element of “lx” corresponds to a predictor variable

lx [ j ] =







0 ignore xj

1 xj is numeric
2 xj is categorical

.

Binary variables can be considered either numeric or categorical. Numeric specification provides
a speed advantage. For the illustrative data set there are two categorical variables (x3 and x4)
and the rest are numeric. This would be in indicated with the R command

> lx c(1,1,2,2,rep(1,6))

Here “c(·)” is the R “concatenate” operator, and the procedure rep(i,j) simply repeats the value
i, j times. An alternative would be

> lx c(1,1,2,2,1,1,1,1,1,1)

The mart default is that all predictor variables are numeric. So if this is the case, the “lx”
parameter need not be specified in the mart command.
Finally, the mart procedure must be told which entries in the predictor data matrix have

missing values. Each missing value must be represented by a numeric missing value flag missval.
The value of this flag must be larger than any nonmissing data value. The mart default is
missval = 9.0e30. If this default value is used, or if there are no missing values and no data
value is greater than 9.0e30, then the parameter “xmiss” need not be specified as an argument
to the mart command. Otherwise, the actual value of missval that was used must be specified
by setting xmiss = missval in the argument list of the mart command. For the illustrative data
set there are no missing values.

3 Regression

For regression the MART model is constructed using the mart command

> mart(x,y,lx)

This command starts a task independent of R running in a separate window. The real time
progress of model construction can be viewed in this window. MART is an iterative procedure.
Each iteration increases the complexity (flexibility) of the model. Shown in the MART window
are the current number of iterations, and the corresponding “training” and “test” set average
absolute error (3) of the MART model at that iteration. Internally, mart randomly partitions
the input data into a “training” data set and a complement “test” set. Only the training set
is used to construct the model; the test set is used to provide an unbiased error estimate. The
default size of the test set is (1/5)th that of the total input data set.
The default number of iterations is 200. When completed the MART window automatically

closes. A numerical summary of the MART run is then displayed in the command window:
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Figure 1: Output from the command progress() after 200 iterations.

MART execution finished.

iters best test abs(error)

200 197 0.2607

This result indicates that there have been 200 total iterations so far, the smallest test error was
obtained at iteration 197 with a corresponding average absolute error of 0.2607.
A graphical summary can be obtained by issuing the command

> progress()

This produces the plot shown in Fig. 1. The lower (black) line is the training error as a function
of number of iterations. The upper (red) line is the corresponding test error.
From Fig. 1 it appears that there is still a general downward trend in test error when the

iterations finished. This suggests that more iterations may be beneficial. Iterations can be
continued from where the last run ended by the command

> moremart()

This again creates a separate MART task that performs 200 (default) more iterations. After
this task completes, a summary of the current model is presented:

MART execution finished.

iters best test abs(error)

400 400 0.2534

This shows that the additional iterations did improve test absolute error, if only by about 3%.
Entering
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Figure 2: Output from the command progress()after 400 iterations.

> progress()

now produces the plot shown in Fig. 2.
Prediction error is still getting smaller at the 400th iteration. This can be more clearly seen

with the command

> progress(F)

which shows a magnified version (Fig. 3) of just the iterations corresponding to the lastmoremart
command. The noisy appearance of the training error is due to the stochastic sampling described
in Friedman 1999b. One could continue iterating in this manner by issuing further moremart
commands. However, it might be useful to pause and examine the predictive model at this point.
More iterations can be applied at any time in the future using additional moremart commands.

3.1 Interpretation

The command

> varimp()

produces the plot shown in Fig. 4. This shows the estimated relative importance (relevance
or influence) of each predictor variable in predicting the response based on the current model.
The variables are ordered in decreasing importance. Here one sees that variables x1 – x4 are all
highly and nearly equally important. Variable x5 is somewhat less important. Variables x6 –
x10 are seen to have little relevance for prediction.
After identifying the most relevant predictor variables, the next step is to get an idea of the

dependence of the MART model on each of them. This is done through “partial dependence”
plots. Entering the command
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Figure 3: Output from the command progress(F) after 400 iterations.
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Figure 4: Output from the command varimp().
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Figure 5: Output from the command singleplot(1).

> singleplot(1)

produces the plot shown in Fig. 5. This is the partial dependence of the model (2) on predictor
variable x1, after accounting for the (average) joint effect of the other predictors (x2, · · ·, x10).
The hash marks at the base of the plot represent the deciles of the x1 distribution. In general,
the nature of the dependence of the model on this variable will depend on the values of the other
predictor variables, and cannot be represented on a single plot. The partial dependence plot
shows the dependence on x1 as averaged over the distribution of values of the other variables
{x2, x3, · · ·, x10}. While this may not provide a comprehensive description, it can show general
trends.
Partial dependence plots for the other predictor variables are obtained using the singleplot

command with the corresponding variable number in the argument. Figure 6 collects together
the results for the first six predictor variables. All plots are centered to have zero mean. Partial
dependence plots for categorical variables (here x3 and x4) are displayed as horizontal barplots,
each bar representing one of the categorical values. The values are (bottom to top) ordered on
increasing value when the category label is interpreted as a real number. (For this example the
labels for x3 were encoded as 0,1,2,3, and those for x4 are 0,1,2.)
Note that none of the functions of the numeric predictors are strictly smooth. Unlike most

other modeling procedures, MART imposes no explicit smoothness constraint on the solution. It
is able to model arbitrarily sharp changes in the response. The extent to which the plots exhibit
smooth general trends is dictated by the data. Here a smoother model tends to fit better. Also
note the much smaller vertical scale on the plot for x6 (lower right). This dependence looks like
pure noise and seems to have no general trend. The plots for predictor variables x7 - x10 look
similar. This is consistent with Fig. 4 that indicated that x6 – x10 have little to no predictive
power.
The MART procedure singleplot plots partial dependence on individual predictor variables.

It is also possible to plot partial dependences on pairs of predictor variables. The command

> pairplot(1,2)
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Figure 6: Output of the commands singleplot(1); · · ·; singleplot(6).
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Figure 7: Output of the command pairplot(1,2).

produces the picture shown in Fig. 7. This is a perspective mesh plot showing the dependence
of the predictive model (2) on joint values of (x1, x2) after accounting for the average joint effect
of the other eight predictor variables. This joint dependence is seen to be fairly additive. The
shape of the dependence on either variable is unaffected by the value of the other variable. This
suggests that there is no interaction between these two variables.
Entering the command

> pairplot(1,3)

produces a series of plots as shown in Fig. 8. This is because x3 is a categorical variable. Each
successive plot shows the partial dependence of the predictive model on the numeric variable x1,
for each of the respective categorical values of x3. Here one sees a very strong interaction effect
between these two variables. For x3 = 0, the model has little or no dependence on x1. For other
x3–values, the shape of the dependence changes considerably. Figure 8 can be contrasted with
Fig. 5. Figure 8 is a more detailed description showing the partial dependence on x1, for each
value of x3. Figure 5 shows the partial dependence on x1 as averaged over the values of x3 in
the data base.
Proceeding further, the command

> pairplot(1,4)

shows (Fig. 9) the partial dependence of the model on x1 for the three categorical values of x4.
All of the plots reveal the same general dependence indicating little or no interaction between
x1 and x4.
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Figure 8: Output of the command pairplot(1,3).
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Figure 9: Output of the command pairplot(1,4).
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Figure 10: Output of the command pairplot(2,4).

The command

> pairplot(2,4)

produces the plots shown in Fig. 10. The dependence of the model on x2 is seen to be generally
linear for all values of x4, but the slope is seen to change for different x4–values. This suggests
a product dependence f(x4) · x2 on these two predictor variables.
The command

> pairplot(3,4)

produces a series of barplots (Fig. 11) because both x3 and x4 are categorical. Each barplot
shows the partial dependence on x3, conditioned on each of the x4 values. By default, pairplot
chooses the variable with the smaller number of values as the one to be conditioned on. One can
override this default by specifying the conditioning variable. The command

> pairplot(3,4,cvar=3)

produces the corresponding plot shown in Fig. 12. Here neither set of plots show much evidence
for interactions between these two variables.
By repeatedly applying the procedures singleplot and pairplot, one can graphically examine

the predictive relationship between the predictor variables and the response, as reflected by the
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Figure 11: Output of the command pairplot(3,4).
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Figure 12: Output of the command pairplot(3,4,cvar=3).

13



predictive model. Depending on the complexity of this relationship, considerable understanding
can often be obtained concerning the system from which the data were collected.
The data used here for illustration were artificially generated according to the prescription

y = f(x) + σ · ε.

The eight numeric predictor variables were randomly sampled from a joint uniform distribution
U8[0, 1]. The two categorical variables were randomly sampled with equal probability assigned
to each of their values. The errors were standard normal ε v N [0, 1]. The scale of the noise was

taken to be σ =
√

varx[f ]
/

3, providing a 3/1 signal-to-noise ratio. The “target” function was

f(x) = [sin(2πx1)]
x3 + x2 · x4 + x5. (5)

3.2 Prediction

The MART model can be used to predict (estimate) response values ŷ given sets of predictor
variable values {x1, x2, · ··, xn} (2). This is done with the martpred command

> yh martpred(xp)

Here “xp” is either a vector of length nvar representing a single observation, or an nobs by nvar
matrix representing nobs observations to be predicted. Here nvar is the number of predictor
variables (columns of “x”). In the former case a single number is returned to “yh”. In the latter
case a vector of predictions of length nobs is returned. As an example,

> xp c(0.5,0.5,1,2,rep(0.5,6))

> martpred(xp)

[1] 1.474161

returns the prediction 1.474161 for the indicated vector “xp”.
A matrix of observations to be predicted “xp” can be input to R from an ASCII file in the

same manner as was the original data matrix “x”

> xp matrix(scan(’datadir /xpred’), ncol = nvar, byrow=T)

The resulting vector “yh” can be written to an ASCII file with the R write command

> write(yh,file=’datadir /yhat’)

4 Classification

For classification problems the response variable y is a label identifying class membership of each
observation. The goal of the model is to produce predictions ŷ that minimize the misclassification
risk R (average loss) of future predictions

R = aveL(ŷ, y). (6)

Here L(ŷ, y) is the loss incurred in predicting ŷ when the unknown true label is y. The loss
matrix is specified by the user. The default loss matrix in MART is

L(ŷ, y) = 1(ŷ 6= y) (7)

so that the risk (6) is the fraction of incorrect predictions ŷ 6= y. General loss structures can be
specified: see mart documentation (help file).
For MART in R the class labels can be of any type (numeric or character) and can assume

any set of values, provided that observations corresponding to the same class are represented
by the same label value. The observation labels can be read into R from an ASCII file by the
command

14



> y scan(’datadir /classlab.txt’)

where datadir is the directory where the file is stored. For the illustrations below, the predictor
variable data matrix “x” is the same as that used above to illustrate regression. The corre-
sponding class labels (classlab.txt) can be downloaded from (4). The R scan command assumes
by default that the quantities to be read from the file are numeric values. This is the case for
the classlab.txt file (4) used here. If the class labels stored in the file happened to be character
values, then the corresponding command

> y scan(’datadir /classlab.txt’,what=’ ’)

should be used.
The classification MART model is constructed using the mart command

> mart(x,y,lx,martmode=’class’)

This launches an independent task to build the model. One can monitor construction in real
time in the corresponding window. Shown in the window are the current number of iterations,
the corresponding test set misclassification risk (6) (7), and the fraction of training observations
currently being used to improve the model. MART uses only those observations that are close
to the current estimated decision boundary. When 200 iterations (default) are completed, the
window automatically closes and the numerical summary is presented:

MART execution finished.

iters best test misclass risk

200 195 0.1835

A graphical summary is obtained by

> progress()

which produces the two plots shown in Fig. 13. The left plot shows test misclassification risk as
a function of number of iterations and the right one shows the fraction of training observations
being used. Note that the largest fraction is 0.5. This is due to the stochastic sampling being
employed (Friedman 1999b).
As seen in the left plot, misclassification risk (here error rate) is still generally decreasing at

the end of the previous run. Entering the command

> moremart()

performs 200 more iterations (default) starting from the previous solution. When completed,
the summary

MART execution finished.

iters best test misclass risk

400 370 0.1555

shows that the additional iterations have improved the error rate. Again entering

> progress()

shows (Fig. 14) a graphical summary of the 400 iterations so far. The command

> progress(F)
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Figure 13: Output of the command progress() for classification after 200 iterations.
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Figure 14: Output of the command progress() for classification after 400 iterations.
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produces a magnified version for just the iterations corresponding to the last moremart command
(not shown).
It appears from Fig. 14 that the error rate is on an increasing trend at the 400th iteration.

However, it sometimes happens that a local increasing trend can be followed by a later decreasing
one. This can be verified by again entering

> moremart()

to produce 200 more iterations. The corresponding summary

MART execution finished.

iters best test misclass risk

600 556 0.1540

shows that a later downward trend did indeed occur, but the final result is estimated to be only
slightly better.

4.1 Interpretation

A first step in interpreting classification models is to understand the nature of the misclassifica-
tions. Entering the command

> classerrors()

produces the horizontal barplot shown in Fig. 15. Each bar corresponds to one of the class
labels. The labels are shown on the left. For this example we see that there are five classes, each
labeled by an integer k ∈ {1, · · ·, 5}. This information can also be obtained from the command

> classlabels(y)

[1] 1 2 3 4 5

attr(,’’type’’)

[1] ’’num’’

The attribute type “num” indicates that here the class labels realize numeric rather than char-
acter (“chr”) values.
The length of each bar in Fig. 15 represents the fraction of test set observations in the

corresponding class that were misclassified. We see that class 3 was the most difficult to separate,
whereas classes 1 and 5 had relatively low error rates.
The next step is to examine the specific nature of the misclassifications. The command

> classerrors(class=3)

produces the barplot shown in Fig. 16. Each bar represents one of the classes into which class
3 observations were misclassified. The length of the bar is the fraction of class 3 (test set)
observations assigned to that (incorrect) class. Here we see that most class 3 observations were
misclassified as class 2 and a slightly smaller number as class 4.
One can examine the misclassification structure for each of the other classes in an analogous

manner. Figure 17 collects the results for all the classes of this example.
As with regression one can plot the estimated importance of the respective predictor variables

with the command

> varimp()
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Figure 15: Output of the command classerrors().
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Figure 16: Output of the command classerrors(class=3).
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Figure 17: Output of the commands classerrors(class=1); · · ·; classerrors(class=5).
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Figure 18: Output of the command varimp() for classification.
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Figure 19: Output of the command varimp(class=2).

producing the plot shown in Fig. 18. This shows the average importance of each of the variables
in predicting all of the classes.
One can also see the relative importances of the predictor variables in separating each of the

individual classes. The command

> varimp(class=2)

produces the plot shown in Fig. 19. Comparing this plot with Fig. 18, one sees that x1 is
relatively more important in separating class 2 than it is averaged over all of the classes.
Given a class label, varimp allows one to identify which predictor variables are most important

in separating the corresponding class from the other classes. Sometimes it may be of interest to
pose the complement question. Given a predictor variable, to which classes does it contribute
most to their separation. This can be done with the command

> classimp(var=2)

producing the plot shown in Fig. 20. Here one sees that x2 contributes considerably more
towards separating class 5 than in separating the other classes.
After identifying those predictor variables that are most relevant to separating each of the

respective classes, it can be informative to see the nature of the dependence of each class on
those variables. The MART model for classification consists of a set of real valued functions
{fk(x)}k∈K , one for each class label k in the complete set of labels K. Each function is related
to the probability pk(x) = Pr[y = k | x] by

fk(x) = log pk(x)−
1

#K

∑

l∈K

log pl(x) (8)

where #K is the total number of classes. Thus, larger values of fk(x) correspond to increased
probability of realizing the class label k for the set of predictor values x. Partial dependence
plots of fk(x) on the predictor variables most influential in separating that class can sometimes
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Figure 20: Output of the command classimp(var=2).

provide insight into what values of those variables tend to increase or decrease the odds of
observing that class.
As in regression, partial dependence plots are made with singleplot and pairplot. The com-

mand

> singleplot(1,class=5)

plots the partial dependence of f5(x) (8) on x1, as shown in Fig. 21.
The command

> pairplot(1,3,class=5)

plots the partial dependence of f5(x) (8) on joint values of x1 and x3, as shown in Fig. 22.
The vague resemblance of Figs. 21 and 22 to Figs. 5 and 8 respectively is not a coincidence.

The class labels in the file “classlab”, used here for illustration, were obtained by partitioning
the values of the “target” function (5) at their 20%, 40%, 60%, and 80% points. Class labels
were assigned the to the data within each successive interval in ascending values from 1 to 5.

4.2 Prediction

The classification MART model can be used to predict either a class label, or class probabilities,
given one or more sets of predictor variable values {x1, x2, · ··, xn}. Class label prediction is
done using martpred as described in Section 3.2. The only difference is that for classification the
procedure returns a predicted class label of the same type as “y” (numeric or character) that
was input to mart. For example

> xp c(0.5,0.5,1,2,rep(0.5,6))

> martpred(xp)
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Figure 21: Output of the command singleplot(1,class=5).

[1] 3

predicts class 3 for the indicated vector “xp”.
Probability prediction is also done with martpred

> martpred(xp, probs=T)

[1] 0.001129717 0.203446046 0.448028862 0.330960423 0.016434953

The estimated probabilities are reported in the order of their internal mart numeric codes. These
can be obtained with the command

> classlabels(y)

[1] 1 2 3 4 5

attr(,’’type’’)

[1] ’’num’’

which returns the class labels in internal mart order.
If “xp” is an nobs by nvar matrix representing nobs observations to be predicted, martpred

returns a vector of predicted labels of length nobs, or an nobs by nclass matrix of probabilities
(probs=T). Here nvar is the number of predictor variables (columns of “x”), and nclass is the
number of classes (distinct values of y).

5 Saving the MART model

Eachmart ormoremart command causes the resulting model to be written to an internal working
storage buffer, over writing the model currently stored there. All subsequent MART commands
associated with this model (moremart, progress, martstat, martpred, varimp, singleplot, pairplot,
classimp, classerrors) reference this buffer. The martsave command can be used to save the
contents of the current working buffer. It can then be retrieved in its present state at a later
time for further analysis or to make predictions. For example,
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Figure 22: Output of the command pairplot(1,3,class=5).
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> martsave(’tutorial’)

OK

saves the MART model developed for the present illustrative example under the name “tutorial”.
If that name is the same as a currently saved model, the latter will be overwritten by the current
buffer.
The command martget transfers a previously saved model to the current working buffer. It

can then be analyzed in the same manner as before it was saved (with martsave). For example,

> martget(’tutorial’)

OK

can be used to retrieve the illustrative example at a later time. Note that this over writes the
model stored in the current working buffer, which should be saved (if needed) before issuing the
martget command.
The command martlist prints a list of all currently saved MART models:

> martlist()

$tutorial

The leading character (here $) is for internal use and should be ignored when referencing the
corresponding saved models.
Finally, the marterase command can be used to irrevocably remove a previously saved MART

model:

> marterase(’tutorial’)

OK

> martlist()

No MART models saved
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