1a) Consider the log likelihood function for logistic regression
$l(\theta)=\sum_{i=1}^{m} y^{i} \log \mathrm{~h}\left(x^{i}\right)+\left(1-y^{i}\right) \log \left(1-h\left(x^{i}\right)\right)$ find the Hessian H of this function, and show that for any vextor z it holds true that $z^{T} H z \leq 0$

To find the Hessian

$$
\begin{gathered}
h_{\theta}(x)=g\left(\theta^{T} x\right)=\frac{1}{1+e^{-\theta^{T} x}} \\
l(\theta)=y^{i} \log \left(g\left(\theta^{T} x\right)\right)+\left(1-y^{i}\right) \log \left(1-g\left(\theta^{T} x\right)\right) \\
\frac{\partial l(\vartheta)}{\partial \theta_{j}}=y^{i} \frac{\frac{\partial g\left(\theta^{T} x\right)}{\partial \theta_{j}}}{g\left(\theta^{T} x\right)}+\left(1-y^{i}\right) \frac{\partial \log \left(1-g\left(\theta^{T} x\right)\right)}{\partial \theta_{j}}=y^{i} \frac{\frac{\partial g\left(\theta^{T} x\right)}{\partial \theta_{j}}}{g\left(\theta^{T} x\right)}+\left(1-y^{i}\right) \frac{\frac{\partial\left(1-g\left(\theta^{T} x\right)\right)}{\partial \theta_{j}}}{1-g\left(\theta^{T} x\right)} \\
g\left(\theta^{T} x\right)=\frac{1}{1+e^{-\theta^{T} x}} ; g(z)=\frac{1}{1+e^{-z}} ; \frac{\partial g(z)}{\partial z}=\frac{\partial\left(1+e^{-z}\right)^{-1}}{\partial z}=(-1)\left(1+e^{-z}\right)^{-2} \frac{\partial\left(1+e^{-z}\right)}{\partial z}=\frac{\frac{\partial\left(g\left(\theta^{T} x\right)\right)}{\left(1+e^{-z}\right)^{2}}(-1) e^{-z} d z}{\partial \theta_{j}} \\
=\frac{\frac{\partial g\left(\theta^{T} x\right)}{\partial \theta_{j}}}{\left(1+e^{-z}\right)^{2}}=\frac{1-1+e^{-z}}{\left(1+e^{-z}\right)^{2}}=\frac{1}{\left(1+e^{-z}\right)}\left(1-\frac{1}{\left(1+e^{-z}\right)}\right)=g(z)(1-g(z))
\end{gathered}
$$

Now we can apply this to computing the Hessian:

$$
\begin{gathered}
y^{i} \frac{\frac{\partial g\left(\theta^{T} x\right)}{\partial \theta_{j}}}{g\left(\theta^{T} x\right)}-\left(1-y^{i}\right) \frac{\frac{\partial\left(g\left(\theta^{T} x\right)\right)}{\partial \theta_{j}}}{1-g\left(\theta^{T} x\right)}=\left[\frac{y}{g\left(\theta^{T} x\right)}-\frac{(1-y)}{1-g\left(\theta^{T} x\right)}\right] \frac{\partial g\left(\theta^{T} x\right)}{\partial \theta_{j}} \\
=\left[\frac{y}{g\left(\theta^{T} x\right)}-\frac{(1-y)}{1-g\left(\theta^{T} x\right)}\right] g\left(\theta^{T} x\right)\left(1-g\left(\theta^{T} x\right)\right) \frac{\partial\left(\theta^{T} x\right)}{\partial \theta_{j}} \\
=\left[\frac{y}{g\left(\theta^{T} x\right)} g\left(\theta^{T} x\right)-\frac{(1-y)}{1-g\left(\theta^{T} x\right)} g\left(\theta^{T} x\right)\right]\left(1-g\left(\theta^{T} x\right)\right) \frac{\partial\left(\theta^{T} x\right)}{\partial \theta_{j}} \\
=\left[y-\frac{(1-y)}{1-g\left(\theta^{T} x\right)} g\left(\theta^{T} x\right)\right]\left(1-g\left(\theta^{T} x\right)\right) \frac{\partial\left(\theta^{T} x\right)}{\partial \theta_{j}}
\end{gathered}
$$

$$
\begin{gathered}
=\left[y\left(1-g\left(\theta^{T} x\right)\right)-(1-y) g\left(\theta^{T} x\right)\right] \frac{\partial\left(\theta^{T} x\right)}{\partial \theta_{j}}=\left[\left(y-y g\left(\theta^{T} x\right)\right)-\left(g\left(\theta^{T} x\right)-y g\left(\theta^{T} x\right)\right)\right] \frac{\partial\left(\theta^{T} x\right)}{\partial \theta_{j}} \\
=\left[y-g\left(\theta^{T} x\right)\right] \frac{\partial\left(\theta^{T} x\right)}{\partial \theta_{j}}=\left[y-h_{\vartheta}(x)\right] x_{j}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial^{2} y}{\partial \theta_{k}}=\frac{\left.\partial\left[y-h_{\theta}(x)\right) x_{j}\right]}{\partial \theta_{k}}=x_{j} \frac{\left.\partial\left[-h_{\theta}(x)\right)\right]}{\partial \theta_{k}}=-x_{j} \frac{\partial g\left(\theta^{T} x\right)}{\partial \theta_{k}}=-x_{j} g(z)(1-g(z)) \frac{\partial z}{\partial \theta_{k}} \\
-x_{j} h_{\theta}(x)\left(1-h_{\theta}(x)\right) x_{k}=X h_{\theta}(x)\left(1-h_{\theta}(x)\right) X^{T}
\end{gathered}
$$

