
SMO Algorithm

Initialize αi← 0 and b← 0
Let fa(x) = b + Σm

i=1 yiαik(x,xi)
Let τ be the tolerance.
Loop

Find two exs. (xp, yp) and (xq, yq) such that:

(fa(xp)− yp + τ < fa(xq)− yq − τ ) ∧
((αp < C ∧ yp = 1) ∨ (αp > 0 ∧ yp = −1)) ∧
((αq > 0 ∧ yq = 1) ∨ (αq < C ∧ yq = −1))

exit loop if no such examples can be found

η ← (fa(xq)− yq)− (fa(xp)− yp)

k(xp,xp)− 2k(xp,xq) + k(xq,xq)

if needed, reduce η so that:

(0 ≤ αp + ypη ≤ C) ∧
(0 ≤ αq − yqη ≤ C)

αp← αp + ypη
αq ← αq − yqη

End Loop
b1 ← max {fa(xi) | yi = 1 ∧ αi > 0}
b−1 ← min {fa(xi) | yi = −1 ∧ αi > 0}
b← −(b1 + b−1)/2

1



SMO Explanation

SMO means “sequential minimal optimization”.

The conditions on xp and xq mean:

1. Relative to each other, xp is below its margin
boundary, and xq is above its boundary.

2. The tolerance is a tradeoff between accuracy
and efficiency.

3. αp can be changed to increase fa(xp).

4. αq can be changed to decrease fa(xq).

To maintain Σm
i=1 αiyi = 0, an increase in αpyp

is matched by a decrease in αqyq.

η optimizes the objective function.

0 ≤ αi ≤ C must be maintained.

One way to set the bias weight b is shown.

Many details to make this more efficient and
stable have been omitted.
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